skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ardehali, Arash Arabi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> In the standard$$ \mathcal{N} $$ N = (4, 4) AdS3/CFT2with symN(T4), as well as the$$ \mathcal{N} $$ N = (2, 2) Datta-Eberhardt-Gaberdiel variant with symN(T4/ℤ2), supersymmetric index techniques have not been applied so far to the CFT states with target-space momentum or winding. We clarify that the difficulty lies in a central extension of the SUSY algebra in the momentum and winding sectors, analogous to the central extension on the Coulomb branch of 4d$$ \mathcal{N} $$ N = 2 gauge theories. We define modified helicity-trace indices tailored to the momentum and winding sectors, and use them for microstate counting of the corresponding bulk black holes. In the$$ \mathcal{N} $$ N = (4, 4) case we reproduce the microstate matching of Larsen and Martinec. In the$$ \mathcal{N} $$ N = (2, 2) case we resolve a previous mismatch with the Bekenstein-Hawking formula encountered in the topologically trivial sector by going to certain winding sectors. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. A<sc>bstract</sc> We consider the 𝒩 = (2, 2) AdS3/CFT2dualities proposed by Eberhardt, where the bulk geometry is AdS3× (S3×T4)/ℤk, and the CFT is a deformation of the symmetric orbifold of the supersymmetric sigma modelT4/ℤk(withk= 2, 3, 4, 6). The elliptic genera of the two sides vanish due to fermionic zero modes, so for microstate counting applications one must consider modified supersymmetric indices. In an analysis similar to that of Maldacena, Moore, and Strominger for the standard 𝒩 = (4, 4) case ofT4, we study the appropriate helicity-trace index of the boundary CFTs. We encounter a strange phenomenon where a saddle-point analysis of our indices reproduces only a fraction (respectively$$ \frac{1}{2} $$ 1 2 ,$$ \frac{2}{3} $$ 2 3 ,$$ \frac{3}{4} $$ 3 4 ,$$ \frac{5}{6} $$ 5 6 ) of the Bekenstein-Hawking entropy of the associated macroscopic black branes. 
    more » « less